
ASCII TEXT COMPRESSION USING HUFFMAN.CPP

JACK FISHER

This project contains the following seven files:
(1) BSTree.h
(2) huffman.cpp
(3) Huffman.h
(4) Makefile
(5) README.txt
(6) test.txt
(7) wap.txt

The Makefile includes directives for compiling, using,
and removing huffman. Useful directives include:

make all / make huffman: compiles and links the
necessary files to generate the executable huffman

make encode: compresses wap.txt into encoded.bin
make decode: decompresses encoded.bin into

decoded.txt
make clean: removes all files generated by the other

makefile directives
To use huffman on your own, you may enter commands

of the following form:
./huffman <mode> <source_file> <dest_file>

where <mode> can be either encode or decode. For encode,
<source_file> must be an ASCII plaintext file. For
decode, <source_file> must be a binary file created by
huffman on the same machine. If <dest_file> does not
exist, it will be created. If it does exist, if will be overwrit-
ten.

huffman uses Huffman encoding and Huffman decoding
to compress plaintext files by constructing a Huffman tree
and representing ASCII characters as bit strings of varying
length.

When encoding a plaintext file, huffman will print a ta-
ble of the characters in the file and their corresponding fre-
quencies, followed by the Huffman tree generated from the
table. It will then print another table of the characters and
their corresponding bit encodings derived from the tree.

Encoding a File

To demonstrate how huffman works, we shall fol-
low the compression and decompression of test.txt, a
file provided with Project 3 for demonstration purposes.
test.txt’s contents are as follows:

This is a test.
When ./huffman encode test.txt encoded.bin is

entered at the command line, huffman opens test.txt and
reads its contents into a string. This string is then iterated

over while each character’s frequency is counted and com-
piled into a map<char, size_t>.1 This map is printed as
a table to the console:

Character frequency map:
\n 1

3
. 1
T 1
a 1
e 1
h 1
i 2
s 3
t 2

The map is then used to generate a Huffman tree using
the Huffman algorithm.2 The resulting tree is printed to
the console:

The Huffman tree (of height 5):
(3, s)

(5, )
(1, .)

(2, )
(1, a)

(9, )
(1, h)

(2, )
(1, e)

(4, )
(2, t)

(16, )
(1, T)

(2, )
(1, \n)

(4, )
(2, i)

(7, )
(3, )

Next, the Huffman tree is used to generate the encod-
ing for each character. Beginning at the root, traversals to
a left child are recorded as a 0, and traversals to a right
child are recorded as a 1. Thus, each character is guaran-
teed to have a unique binary encoding which is not a prefix
of another character’s encoding. Another map (this time
a map<char, vector<bool>>) is created and populated to
allow quick access to each character’s encoding. This map
is printed to the screen:

1In the unlikely event of a size_t overflow, an appropriate message
is printed to the console. The program will then continue as usual, as
sub-optimal compression may still be desired.

2 See https://www.siggraph.org/education/materials/
HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html.

1

https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html


2 JACK FISHER

Map of chars to bit codes:
\n 0110

00
. 1101
T 0111
a 1100
e 1010
h 1011
i 010
s 111
t 100

Finally, the input string is iterated over once more, and
a vector<bool> is constructed to represent the entire con-
tents of test.txt.

Before this bitstream is written to the destination file,
however, a representation of the Huffman tree used to gen-
erate the characters’ binary codes must be written to the
beginning of the file. This allows huffman to generate the
tree again for decoding. The map<char, size_t> of charac-
ter frequencies is thus encoded as an alternating sequence of
chars and size_ts and terminated with the null character
(\0).

Now the bitstream of the encoded message is converted
into char-sized blocks (8 bits each) and written to the des-
tination file.

A final char is generated with a value corresponding to
the number of bits to throw out of the last char in the mes-
sage bitstream. This char is written to the destination file,
and the file is closed.

Decoding a File

Now that the contents of test.txt have been encoded
as encoded.bin, they can be decoded with the command
./huffman decode encoded.bin decoded.txt.

The source file is opened as before. This time its contents
are read as alternating chars and size_ts, constructing the
character frequency map used before. Once the null char-
acter (\0) is read, the map is complete. The Huffman tree
is derived from the map as before, and the tree is printed
to the screen. As long as encoded.bin is encoded and de-
coded on the same machine, the derived tree will be the
identical to the one used for encoding.

The tree is used as before to generate a map of characters
and their respective codes, and the remainder of the file is
read as a series of chars which are interpreted bit-by-bit in
a vector<bool>. When the final char is read, its value is
added to its own size (8 bits), and the resultant sum 8+n is
used to remove the last 8 + n bits from the vector<bool>.
These n bits represent the extra space required to make a
complete char when encoded.bin was written.

Finally, the vector<bool> is iterated through, generat-
ing the appropriate chars which are written to the destina-
tion file before the file is closed.

A Note on Compression

You may notice that the size of test.txt is 16 bytes
while the size of encoded.bin is 99 bytes (over 600% of the
original size). This is due to the encoding of the Huffman
tree within the file — which, for small files, outweighs any
compression gained.

Compressing the included wap.txt (3,348,584 bytes) will
yield an encoded file of 1,892,343 bytes — 57% of the origi-
nal file size.

The greatest compression will be achieved with large
source files containing small subsets of the characters in
the ASCII alphabet.


	Encoding a File
	Decoding a File
	A Note on Compression

